由于本科专业是生物信息(可以理解为生物统计学或者与基因数据相关的数据挖掘学科), 所以那时已经开始接触数据挖掘,对统计也算有一定的基础。记得大二的时候,我便开始学用 matlab,然后玩弄SVM,神经网络之类的机器学习算法做一些分析和实验。现在想想那时候可能连这些算法的基本概念都不是很清晰,算是皮毛都不懂。但有一点就是,让我对这类算法不怎么畏惧,甚至于非常感兴趣。本科的时候,发现自己对生物兴趣不大,倒是对编程颇以为是,所以读研又改学了计算机。虽然换了专业,但我对数据挖掘仍然兴趣不减。在研究生阶段,涉及数据挖掘,机器学习, 高级数据库之类的课程我的成绩都是 90+,这至少说明我很用心。总之,读研这几年我也在不断地规划着自己的数据挖掘之路。然而,数据挖掘是门交叉学科,涉及的内容很多,而且还需要理论联系实际,要掌握起来其 实是非常困难的。我曾经非常幼稚地认为,数据挖掘无所不能,适用于各行各业,却忽视了数据挖掘非常难以掌握的一面。首先,要构建完整的数据挖掘理论知识体系;其次,要能够 深入到具体的行业或市场进行具体项目的实战。至于学习数据挖掘的前景,推荐看看一篇博客, 扒一扒这个数据挖掘行业,黄油和面包。这篇文章算是资深人士对数据挖掘行业一点点小小的爆料,感觉对于我这样的初学者来说,有着高屋建瓴的作用。http://saslist.net
学习SAS 源于我当初想去金融行业做分析师的想法,而这个想法又是源自于自己的 MBTi 测试的结论。算起来开始学sas 应该是 10 年下半年的时候,我先是买了一本《SAS 编程与数 据挖掘商业案例》,后是看了《The little SAS book (3rd)》电子版,还有 SAS 认证考试 样题-123 题。我还在 saslist 上建立起了博客,分享了一些学习心得,还有找实习的一些经历。而我对 sas 的学习经历,也就集中在 10 年的下半年这段时间了。后来到了11 年初, 偶然间看到统计之都上,举办第一届数据挖掘挑战赛的信息。我便花了 1 个多月去参加比赛, 再后来便去找实习。到现在不知道自己还会不会继续学习 sas,但 saslist 确实对我的数据 挖掘之路,起着承上启下的作用。在这里很容易让你融入一个学习数据分析,数据挖掘的圈子,很多前辈们的精彩博文都对自己起着极大的鼓舞作用。
原创文章: ”我的数据挖掘之路 by wrchow“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/252
原创文章: ”SAS资讯 from 新浪微博 – 2012-04-01“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/234
Map charting, so easy ! 以后再也不担心画地图了。
图1,世界地图 (去掉南极)
美国版以大西洋为中心
图2,世界地图 (去掉南极)
中国版 以太平洋为中心
图3, 亚洲地图
图4,中国地图
原创文章: ”世界-亚洲-中国省市县各级地图列表 by sxlion“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/235