msgbartop
List for SAS fans and programmer
msgbarbottom

12 1月 14 SAS与R优缺点讨论:从工业界到学界


SAS与R的优缺点讨论:从工业界到学界

翻译 by JosephYX  校对 by sxlion  原文链接

导读:尽管这个话题已经讨论过很多次,但是这个翻译是比较系统的总结了一下两个软件的优缺点,值得一看。PS: 此话题已老,推荐新人看,另见以前一篇SAS评论引发的思考 by sxlion

摘要

尽管在工业界还是被 SAS 所统治,但是 R 在学术界却得到广泛的应用,因为其免费、开源的属性使得用户们可以编写和分享他们自己的应用。然而,许多正在获得数据分析相关学位的学生们由于缺乏 SAS 经验的情况而在找工作的路上困难重重,与此同时,他们要面对从学校熟悉的 R向 SAS 转型的痛苦。理想情况是,你需要知道所有可能的编程语言,工作的时候使用与工作情况最匹配的那个,当然这个基本上是痴人说梦。我们的目的就是展示这两种差异巨大的语言各自优点,并且共同发挥他们的优势,我们同时还要指出那些不使用 SAS 好多年的、现在正在使用 R语言的人们的一些误解和偏见,因为他们已经很少关注 SAS 的发展和进步了。

 前言

我们选取 SAS 和 R 的原因是因为他们是目前在统计领域中最有统治地位的两个编程语言。 现在我们注意到一个不好的现象,就是在学术界重度使用R的用户认为R在被SAS霸占的工业界有具有相当优势的,然而熟练掌握这两个软件对于想在数据分析领域取得小有成就的年轻人来说很关键。教授误解加上对某个软件的偏好往往对学生有着不利的引导,因此需要在这里指出:教授们,别偷懒了,对某种语言的主观偏好将会影响学生的钱途。

SAS经常有一些更新(有点慢,sxlion注),非SAS程序员由于没有技术跟进往往并不知情。SAS绘图模块就是一个快速发展并成长的例子,然而许多人并不注意到这些升级以至于他们仍然固执的使用 R画图。SAS另一个不广为人知的例子是SAS可以轻松自定义函数,这正是 R 的强项。这个SAS过程步(PROC)有全面的语法检查、翔实的文档和技术支持;然而一个新的使用者很可能不知道这些工具可用,或者根本不知道它们的存在。另外,SAS 还拥有卓越的培训课程,网络及用户组分享资源,不同相关主题的大量书籍。知道并合理的使用这些技术以及工具 有助于减少使用 SAS的畏惧之心。

 相关问题讨论

本文就在我们学院碰到的一些共同误解的地方,在此对比列出两种语言的优缺点。当然还有更多的争论在进行中,但是本文汇中我们将选取最为普遍的来进行讨论。我们希望能够消除误解,并且尽可能地为那些不能及时跟进R或SAS的分析人士提供新的信息。

统计方法的新进展

SAS

  • Ÿ  优点:SAS 的软件及算法都是经过检验的,SAS 有技术支持去快速解决用户的需求。 如果需要的话,SAS  会尝试在已存在的步骤中嵌入新的方法,例如增加一个选项或者新增一个语句(statement),因此用户不需要学习另外一个过程步。SAS也 会发布最新通讯来详细说明软件的更新。
  • Ÿ   缺点:更新升级较慢。

R

  • 优点:用户可以快速实施新方法,或者寻找已经存在的软件包。很容易学习和理解新方法,因为学生们可以看到代码中的函数。
  • 缺点:R 文档的更新都是通过用户进行的,所以新的方法并没有被很好调试和检验。 开发者们散布于各地,而并没有在一起来进行团队合作的开发。

在这个问题上,SAS 和 R 的优缺点是互补的。对于 R,有人认为它的代码是开放的,可以看到 R 是如何工作的,这对于拥有相关背景的人是比较容易理解的。然而对于 SAS,它的过程步是预装的,文件中对不同的语句(Statement)及选项( Option) 存储了大量的数学公式。如果用户真的想看到底层程序,这个也是很容易实现的。对两种语言的使用着者来说,不管是学生还是其它用户,只是运行代码的话对于两种语言是没有什么不同的。你运行SAS,不需要知道它在干什么,类似的是,你运行R时,也不需要知道它在后台调用的函数。你所做的就是按章操作而已。

 画图 (更多…)

原创文章: ”SAS与R优缺点讨论:从工业界到学界“,转载请注明: 转自SAS资源资讯列表

本文链接地址: http://saslist.net/archives/370