最近新冠肆虐,在高度全球化的地球村,没有哪一个国家和地区的人能躲避这个病毒, 它是全人类的敌人。在油管上看到一个有趣的动图展示(Trajectory of COVID-19 confirmed cases,请自行搜索)。其中有一个图形截图如下:
这个图横纵坐标都用的是对数坐标系,有意思的是,横坐标是总确诊例数,纵坐标是新增例数。对于这种全球性的大型数据一些公司常用的是鼓泡泡图,漂亮美观大气,特别是拿着长竹竿在大屏幕上敲敲打打,非常地霸气。虽然能够看到各国的变化趋势和比较,但是没法判断关键节点。而这种弹道图却能很好地恰如其分的看到拐点。毕竟天天隔离在家,不能出门是非常的无聊无助,看到拐点就看到了解封的希望。
这种图的就是曲线图,随时间增加而变化的动态图,比较能反映其变化。画这种几个要点:
1,数据源,全球性、长时间的数据,这次的数据很符合。在网上找到一个WHO的数据源。
2,坐标系采用对数坐标系。病毒这种微生物,其生长趋势分为潜伏期,对数增长期,平稳期和消亡期。课本上讲的清清楚楚,相关理论及现象也是多如牛毛,这里就不罗嗦了。 人类对线性的理解比较深刻,对什么指数式增长的爆发曲线则有种失控感。采用线性变化趋势能够很好的保护人类的脆弱心理,有利于做出理性的判断。
3,横纵坐标的变量的选取,这是个难点。常规下横坐标是时间,纵坐标是数量的对数。这个通常用来预测限制条件下的生长变化趋势。但其实很多时候,实际影响因素太多而无法做出判断,通常都是马后炮。但是如果能从历史曲线中学习到新知识,也是很有收获的。除了时间、总数以外,每日新增数,时间拐点这两个参数也是非常受关注。 怎么把这两个参数在图表上表示出来呢? 问题很好,答案就在本文图1中。总数,每日新增,拐点,就缺个时间戳。从图1可知,中国和韩国已经上岸,其他国家还挂在线上。
4,需要吸引人。 SAS画图的毛病我在群里吐槽了很多,这里就不多表。不过SAS画图工工整整,严谨,直接挂Nature上都行。如果能增加一点活泼感就更好了,这里,我在横纵坐标轴上做了一点改进,让坐标轴从1000起步,随时间增加,新增数和总数隔一段时间会增加一个量级,效果不错。如下图。
5,还有一个处理,由于上报的时间存在滞后,并且检测技术,诊断标准各个国家都在变,所以上报的数据在某些阶段过于集中,导致有假拐点出现。因此,这里做了一个平滑,使用移动平价,也即是今天的新增数据用将过去7天(包括今天)平均数来代替,避免假拐点迷惑人类的眼睛。
上面这个是全球的,齐齐整整的,全都上线了。中韩提前下线,但是要看到后面新增例数存在一个反复的过程,防疫任务艰巨,大家还是不能掉以轻心。下面重点看下几个不管是自称的,还是公认的“模范生”。曲线上写的清清楚楚。看下面图,日本,新加坡,这分明还在线上挣扎嘛。最多是把曲线拉平了一些(”flatten the curve”,请自行搜索。),拐点还不明朗,还需少吹牛,多努力。
原创文章: ”COVDI-19全球各国病例数弹道追踪图示“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/460
大家有一个普通的印象:SAS的更新很慢,很老很落后。可能跟它的版本命名有关,SAS9.0是2004年出来的,到现在都快20年了,版本号 还停留在9字头,并且还没有继续更新的迹象。当然这个与SAS公司的命名习惯有关系,要知道普通人都是没用过9.00,也没用过9.39的,不象MATLAB和SPSS那样一年几个或一个更新。
老外都迷信偶数,觉得偶数才是吉祥数字,奇数都是不稳定的。比如说3G通讯信号是个渣,Win7是个垃圾。苹果不自信,不敢用10,用了个X,果然也不行。一直准备学SAS的新编程语言CASL(Cloud Analytic Services Language),自己电脑上的SAS@ Studio 不知道怎么回事一直连不上。只好用用SAS网站上的SAS Viya trial(请自行搜索关键词),注册一下很快就可以用了,比本地安装SAS软件快多了。界面是浏览器界面,很清爽漂亮,长下面这个样子。
对于SASor来说,顺手写下了上面的代码是件在正常不过的事,类似在其他语言上写“Hello,World”。没有报错,在log里面的Note标签底下出现了SAS的Lincense信息(见以前的文章:深入了解SAS License),果然有收获。
先看看版本号V.03.04M0P050819,这不明摆着是10嘛,我觉得SAS有这个自信把这一版的SAS命名为SAS10,比如说CASL出现简直就是新的里程碑啊。然后授权点Site name:’DEMOCENTER – 19W21 Full Order Setinit’.全订单的demo版本,查了一下,好像不是很全,毕竟SAS好多东西都是Undocumented的。再往下看number没什么可讲的,不过下面的CPU A,B,C有点意思,云计算,CPU就是多。继续是有效期1年,很SAS。系统生日是2019年10月3日,很新,使用的应该是64位Linxus系统,紧跟着下面长长的列表就是全系统的SAS模块产品了,很长。CPU A 对应的是SAS老语言的模块,CPU B对应的只有两个Base SAS Software和Threaded Kernel Extensions for Central Analytic Server,没弄明白;后面的全是CPU C对应的模块,除了BASE和几个时间序列的,全是以CAS打头的,很明显,都是云分析模块,很细致很长,以前命名的模块,一个衍生出好多个,Goodnight这是要拆开来一个一个的单卖啊。
我全附在下面了,有兴趣的自行研究。
Product expiration dates: —Base SAS Software 10OCT2020 (CPU A) —SAS/STAT 10OCT2020 (CPU A) —SAS/GRAPH 10OCT2020 (CPU A) —SAS/ETS 10OCT2020 (CPU A) —SAS/OR 10OCT2020 (CPU A) —SAS/IML 10OCT2020 (CPU A) —SAS/QC 10OCT2020 (CPU A) —SAS/CONNECT 10OCT2020 (CPU A) —SAS Risk Management 10OCT2020 (CPU A) —SAS Enterprise Miner 10OCT2020 (CPU A) —SAS/Secure 168-bit 10OCT2020 (CPU A) —SAS Data Quality Server 10OCT2020 (CPU A) —SAS High-Performance Forecasting 10OCT2020 (CPU A) —OR OPT 10OCT2020 (CPU A) —OR PRS 10OCT2020 (CPU A) —OR IVS 10OCT2020 (CPU A) —OR LSO 10OCT2020 (CPU A) —SAS/ACCESS Interface to DB2 10OCT2020 (CPU A) —SAS/ACCESS Interface to Oracle 10OCT2020 (CPU A) —SAS/ACCESS Interface to SAP ASE 10OCT2020 (CPU A) —SAS/ACCESS Interface to PC Files 10OCT2020 (CPU A) —SAS/ACCESS Interface to ODBC 10OCT2020 (CPU A) —SAS/ACCESS Interface to R/3 10OCT2020 (CPU A) —SAS/ACCESS Interface to Teradata 10OCT2020 (CPU A) —SAS/ACCESS Interface to Microsoft SQL Server 10OCT2020 (CPU A) —SAS/ACCESS Interface to MySQL 10OCT2020 (CPU A) —SAS Data Quality Server – All Languages 10OCT2020 (CPU A) —Text Miner for Danish 10OCT2020 (CPU A) —Text Miner for Dutch 10OCT2020 (CPU A) —Text Miner for Finnish 10OCT2020 (CPU A) —Text Miner for French 10OCT2020 (CPU A) —Text Miner for German 10OCT2020 (CPU A) —Text Miner for Italian 10OCT2020 (CPU A) —Text Miner for Portuguese 10OCT2020 (CPU A) —Text Miner for Spanish 10OCT2020 (CPU A) —Text Miner for Swedish 10OCT2020 (CPU A) —Text Miner for Polish 10OCT2020 (CPU A) —Text Miner for Japanese 10OCT2020 (CPU A) —Text Miner for Arabic 10OCT2020 (CPU A) —Text Miner for Russian 10OCT2020 (CPU A) —Text Miner for Korean 10OCT2020 (CPU A) —SAS Size Profiling 10OCT2020 (CPU A) —SAS Pack Optimization 10OCT2020 (CPU A) —Text Miner for Croatian 10OCT2020 (CPU A) —Text Miner for Norwegian 10OCT2020 (CPU A) —Text Miner for Slovak 10OCT2020 (CPU A) —Text Miner for Slovenian 10OCT2020 (CPU A) —Text Miner for Czech 10OCT2020 (CPU A) —Text Miner for Greek 10OCT2020 (CPU A) —Text Miner for Hebrew 10OCT2020 (CPU A) —Text Miner for Hungarian 10OCT2020 (CPU A) —Text Miner for Romanian 10OCT2020 (CPU A) —Text Miner for Thai 10OCT2020 (CPU A) —Text Miner for Turkish 10OCT2020 (CPU A) —Text Miner for Chinese 10OCT2020 (CPU A) —Text Miner for Indonesian 10OCT2020 (CPU A) —Text Miner for Vietnamese 10OCT2020 (CPU A) —Text Analytics for Farsi 10OCT2020 (CPU A) —Text Analytics for Hindi 10OCT2020 (CPU A) —Text Analytics for Tagalog 10OCT2020 (CPU A) —SAS Model Manager 10OCT2020 (CPU A) —SAS/IML Studio 10OCT2020 (CPU A) —SAS Workspace Server for Local Access 10OCT2020 (CPU A) —SAS Workspace Server for Enterprise Access 10OCT2020 (CPU A) —SAS/ACCESS Interface to Netezza 10OCT2020 (CPU A) —SAS Scoring Accelerator for Teradata 10OCT2020 (CPU A) —SAS/ACCESS Interface to Greenplum 10OCT2020 (CPU A) —SAS/ACCESS to Hadoop 10OCT2020 (CPU A) —SAS/ACCESS to Vertica 10OCT2020 (CPU A) —SAS/ACCESS to Postgres 10OCT2020 (CPU A) —SAS/ACCESS to Impala 10OCT2020 (CPU A) —SAS/ACCESS to HAWQ 10OCT2020 (CPU A) —SAS/ACCESS to Amazon Redshift 10OCT2020 (CPU A) —DataFlux Driver for Base SAS 10OCT2020 (CPU A) —High Performance Suite 10OCT2020 (CPU A) —SAS High-Performance Risk Engine Server 10OCT2020 (CPU A) —SAS High-Performance Statistics 10OCT2020 (CPU A) —SAS High-Performance Econometrics and Time Series 10OCT2020 (CPU A) —SAS Event Stream Processing 10OCT2020 (CPU A) —SAS Visual Analytics Hub 10OCT2020 (CPU A) —SAS Visual Analytics Services 10OCT2020 (CPU A) —Score Publish Hadoop 10OCT2020 (CPU A) —SAS/ACCESS to SAP HANA 10OCT2020 (CPU A) —SAS Visual Analytics Server Components 10OCT2020 (CPU A) —SAS Data Quality Accelerator for Teradata 10OCT2020 (CPU A) —SAS Visual Statistics Mid-tier 10OCT2020 (CPU A) —Visual Analytics Explorer 10OCT2020 (CPU A) —Cloud Analytic Services 10OCT2020 (CPU A) —Vis Investigator Alerts Svc 10OCT2020 (CPU A) —Vis Invstgtr Srch Disc Svc 10OCT2020 (CPU A) —Visual Investigator 10OCT2020 (CPU A) —Vis Invstgtr Entity Svc 10OCT2020 (CPU A) —Machine Learning Procedures 10OCT2020 (CPU A) —Common Analytic Procedures 10OCT2020 (CPU A) —Advanced Analytics Statistics 10OCT2020 (CPU A) —Text Mining Process 10OCT2020 (CPU A) —SAS DMML Setinit 10OCT2020 (CPU A) —Time Series Model Procs 10OCT2020 (CPU A) —Forecast Reconcil Procs 10OCT2020 (CPU A) —Time Series Info Procs 10OCT2020 (CPU A) —SAS Econometrics Procedures 10OCT2020 (CPU A) —Optimization Procedures 10OCT2020 (CPU A) —Event Stream Analytics 10OCT2020 (CPU A) —SAS Event Stream Manager 10OCT2020 (CPU A) —DM DQ Orderable (Viya) 10OCT2020 (CPU A) —SAS Data Preparation 10OCT2020 (CPU A) —Text Analytics UI Setinit 10OCT2020 (CPU A) —Data Agent Service 10OCT2020 (CPU A) —Forecasting Procedures 10OCT2020 (CPU A) —Mobile Investigator 10OCT2020 (CPU A) —Analytics for IoT 10OCT2020 (CPU A) —Time Series External Language 10OCT2020 (CPU A) —SAS Adaptive Learning and Intelligent Agent 10OCT2020 (CPU A) —Data Connector SAS Data Sets 10OCT2020 (CPU A) —Data Connector to DB2 10OCT2020 (CPU A) —Data Con Accel Hadoop 10OCT2020 (CPU A) —Data Con Accel Teradata 10OCT2020 (CPU A) —Data Connector to Hadoop 10OCT2020 (CPU A) —Data Connector to Impala 10OCT2020 (CPU A) —Data Connector to ODBC 10OCT2020 (CPU A) —Data Connector to Oracle 10OCT2020 (CPU A) —Data Connector to PC Files 10OCT2020 (CPU A) —Data Connector to Postgres 10OCT2020 (CPU A) —CAS DFeeder EmbProc Switch 10OCT2020 (CPU A) —TK Extensions for CAS DFeed 10OCT2020 (CPU A) —Data Connector to Teradata 10OCT2020 (CPU A) —TK Ext for Amazon Redshift 10OCT2020 (CPU A) —TK Ext for Impala 10OCT2020 (CPU A) —TK Ext for HAWQ 10OCT2020 (CPU A) —TK Ext for SAP HANA 10OCT2020 (CPU A) —TK Ext for Oracle 10OCT2020 (CPU A) —TK Ext for Greenplum 10OCT2020 (CPU A) —TK Ext for HadoopHive 10OCT2020 (CPU A) —TK Ext for DB2 10OCT2020 (CPU A) —TK Ext for Netezza 10OCT2020 (CPU A) —TK Ext for Teradata 10OCT2020 (CPU A) —TK Ext for MySQL 10OCT2020 (CPU A) —TK Ext for PostgreSQL 10OCT2020 (CPU A) —TK Ext for ODBC 10OCT2020 (CPU A) —TK Ext for MS SQL Server 10OCT2020 (CPU A) —CAS Web Media Data Feeder 10OCT2020 (CPU A) —Data Connector to SAP HANA 10OCT2020 (CPU A) —TK Ext for Vertica 10OCT2020 (CPU A) —Data Connector to Amazon Redshift 10OCT2020 (CPU A) —Data Connector to Microsoft SQL Server 10OCT2020 (CPU A) —Data Connector to SPDE 10OCT2020 (CPU A) —Data Connector to MySQL 10OCT2020 (CPU A) —SAS/ACCESS to Spark 10OCT2020 (CPU A) —TK Ext for Spark 10OCT2020 (CPU A) —Data Connector to Spark 10OCT2020 (CPU A) —Data Con Accel Spark 10OCT2020 (CPU A) —SAS/ACCESS to JDBC 10OCT2020 (CPU A) —TK Ext for JDBC 10OCT2020 (CPU A) —Data Connector to JDBC 10OCT2020 (CPU A) —Data Connector to Vertica 10OCT2020 (CPU A) —Text Analytics Kazakh 10OCT2020 (CPU A) —Intel Investgatn Mgmt 10OCT2020 (CPU A) —Base SAS Software 10OCT2020 (CPU B) —Threaded Kernel Extensions for Central Analytic Server 10OCT2020 (CPU B) —Base SAS Software 10OCT2020 (CPU C) —Time Frequency Analysis 10OCT2020 (CPU C) —Time Series Analysis 10OCT2020 (CPU C) —Simple Forecasting Service 10OCT2020 (CPU C) —Automated Time Series Model 10OCT2020 (CPU C) —Time Series Utilities 10OCT2020 (CPU C) —Time Series Modeling 10OCT2020 (CPU C) —Forecasting Time Filters 10OCT2020 (CPU C) —Forecast UI Setinit 10OCT2020 (CPU C) —Decision Microservice 10OCT2020 (CPU C) —Rulesets Microservice 10OCT2020 (CPU C) —CAS Action Set for Aggregation 10OCT2020 (CPU C) —CAS Action Set for Bayesian Network Classifier 10OCT2020 (CPU C) —Action Set for Boolean Rule Extraction 10OCT2020 (CPU C) —CAS Action Set for Cardinality 10OCT2020 (CPU C) —CAS Action Set for COUNTREG Messages 10OCT2020 (CPU C) —CAS Action Set for Deep Neural Networks 10OCT2020 (CPU C) —CAS Action Set for DS2 10OCT2020 (CPU C) —CAS Action Set for Decision Tree 10OCT2020 (CPU C) —Action Set for FEDSQL 10OCT2020 (CPU C) —CAS Action Set for simple one-off Time Series 10OCT2020 (CPU C) —CAS Action Set for K-Means Cluster Analytics 10OCT2020 (CPU C) —CAS Action Set for Streaming Data 10OCT2020 (CPU C) —CAS Action Set for Data Mining, Machine 10OCT2020 (CPU C) —CAS Action Set for Artificial Neural Net 10OCT2020 (CPU C) —CAS Action Set for Nonlinear Models 10OCT2020 (CPU C) —CAS Action Set for OPTMINER 10OCT2020 (CPU C) —Action Set for Parsing and Categorization 10OCT2020 (CPU C) —CAS Action Set for principal component analysis 10OCT2020 (CPU C) —Action Set for Reconcile 10OCT2020 (CPU C) —CAS Action Set for Regression Modeling 10OCT2020 (CPU C) —CAS Action Set for Real-Time Entity Generation 10OCT2020 (CPU C) —CAS Action Set for Sampling 10OCT2020 (CPU C) —CAS Action Set for Full Text Search 10OCT2020 (CPU C) —CAS Action Set for Sentiment Analysis 10OCT2020 (CPU C) —CAS Action Set for Sequence 10OCT2020 (CPU C) —Action Set for Severity Modeling 10OCT2020 (CPU C) —CAS Action Set for Common Code 10OCT2020 (CPU C) —Action Set for Support Vector Machines 10OCT2020 (CPU C) —CAS Action Set for Time Series Processing 10OCT2020 (CPU C) —CAS Action Set to Implement Factorization 10OCT2020 (CPU C) —Action Set for Transpose 10OCT2020 (CPU C) —CAS Action Set for Text Mining 10OCT2020 (CPU C) —CAS Action Set for Variable Reduce 10OCT2020 (CPU C) —CAS Action Set Recommender 10OCT2020 (CPU C) —CAS Action Set for midTierServices 10OCT2020 (CPU C) —CAS Action Set Soc Ntwk Analys 10OCT2020 (CPU C) —CAS Action Set Network Common 10OCT2020 (CPU C) —CAS Action Set for Deep Learning 10OCT2020 (CPU C) —CAS Action Set Network Opt 10OCT2020 (CPU C) —CAS Action Set QKB Management 10OCT2020 (CPU C) —CAS Action Set Data Mgt Cluster 10OCT2020 (CPU C) —CAS Action Set ASTORE Scoring 10OCT2020 (CPU C) —CAS Action Set for Computer Vision 10OCT2020 (CPU C) —CAS Action Set Model Publishing 10OCT2020 (CPU C) —Action Set Stat Graph Comp 10OCT2020 (CPU C) —CAS Action Set Data Profile 10OCT2020 (CPU C) —ActionSet Decision Tree Adv 10OCT2020 (CPU C) —CAS Action Set Parsing Adv 10OCT2020 (CPU C) —CAS Action Set Txt Mining Adv 10OCT2020 (CPU C) —CAS Action Set Nearest Neighbor 10OCT2020 (CPU C) —CAS Action Set Variable Cluster 10OCT2020 (CPU C) —CAS Action Set Rule Mining 10OCT2020 (CPU C) —CAS Action Set SemiSuper Learn 10OCT2020 (CPU C) —CAS Action Set Optimization 10OCT2020 (CPU C) —CAS Action Set Clustering ESP 10OCT2020 (CPU C) —CAS Action Set Time Series Info 10OCT2020 (CPU C) —CAS Action Set Forecast Override 10OCT2020 (CPU C) —CAS Action Set Time Frequency 10OCT2020 (CPU C) —CAS Action Set Copula Modeling 10OCT2020 (CPU C) —CAS Action Set Panel Dat Regress 10OCT2020 (CPU C) —CAS Action Set QLIM Models 10OCT2020 (CPU C) —CAS Action Set Vector Data Desc 10OCT2020 (CPU C) —CAS Action Set Robust PCA 10OCT2020 (CPU C) —CAS Action Set PLS 10OCT2020 (CPU C) —CAS Action Set QuantReg 10OCT2020 (CPU C) —CAS Action Set Planning Service 10OCT2020 (CPU C) —CAS Action Set Comp Symb Diff 10OCT2020 (CPU C) —CAS Action Set DeepRecur NeurNet 10OCT2020 (CPU C) —CAS Action Set Multnom Discrete 10OCT2020 (CPU C) —CAS Action Set Hid Markov Model 10OCT2020 (CPU C) —CAS Action Set Spatial Regress 10OCT2020 (CPU C) —CAS Action Set Agg Loss Model 10OCT2020 (CPU C) —CAS Action Set CASRMV 10OCT2020 (CPU C) —CAS Action Set CASCORR 10OCT2020 (CPU C) —CAS Action Set CASFREQ 10OCT2020 (CPU C) —CAS Action Set GAM 10OCT2020 (CPU C) —CAS Action Set Mixed 10OCT2020 (CPU C) —CAS Action Set PHREG 10OCT2020 (CPU C) —CAS Action Set CASSPC 10OCT2020 (CPU C) —CAS Action Set LDA Topic Model 10OCT2020 (CPU C) —CAS Action Set Stability Monitoring 10OCT2020 (CPU C) —CAS Action Set Time Filters 10OCT2020 (CPU C) —CAS Action Set Parsing VisTxtAn 10OCT2020 (CPU C) —CAS Action Set Txt Min Vis Anlyt 10OCT2020 (CPU C) —CAS Action Set BLRule VisAnlyt 10OCT2020 (CPU C) —CAS Action Set SentAnlys VisAnly 10OCT2020 (CPU C) —CAS Action Set Search VisAnlyt 10OCT2020 (CPU C) —CAS Action Set Txt Mining Topics 10OCT2020 (CPU C) —CAS Action Set Txt Mining Util 10OCT2020 (CPU C) —CAS Action Set Txt Mining RLDisc 10OCT2020 (CPU C) —CAS Action Set Txt Mining RLDev 10OCT2020 (CPU C) —CAS Action Set Txt Mining RLScor 10OCT2020 (CPU C) —CAS Action Set VisAnlyt CRF 10OCT2020 (CPU C) —CAS Action Set Vis Anlyt TxtSum 10OCT2020 (CPU C) —CAS Action Set for Smart Data 10OCT2020 (CPU C) —CAS Action Set Biomed Img Prcs 10OCT2020 (CPU C) —CAS Action Set PSEUDO Local 10OCT2020 (CPU C) —CAS Action Set Mdl-Based Clustr 10OCT2020 (CPU C) —CAS Action Set for Audio 10OCT2020 (CPU C) —CAS Action Set for Speech to Text 10OCT2020 (CPU C) —CAS Action Set for Univariate Time Series Analysis 10OCT2020 (CPU C) —CAS Action Set for Economic Capital Modeling 10OCT2020 (CPU C) —CAS Action Set Ind. Cmpnt Anlys 10OCT2020 (CPU C) —CAS Action Set for tSNE 10OCT2020 (CPU C) —CAS Action Set Multi-task Learn 10OCT2020 (CPU C) —CAS Action Set for probML 10OCT2020 (CPU C) —CAS Action Set Mach Lrning Tool 10OCT2020 (CPU C) —CAS Action Set Risk Methods 10OCT2020 (CPU C) —CAS Action Set Risk Results 10OCT2020 (CPU C) —CAS Action Set Risk Run 10OCT2020 (CPU C) —CAS Action Set Risk Sim 10OCT2020 (CPU C) —Action Set for Automated Machine Learning 10OCT2020 (CPU C) —Action Set for Composite Interpretability 10OCT2020 (CPU C) —Action Set for Model Interpretability 10OCT2020 (CPU C) —Action Set for Machine Learning for Sparse Data 10OCT2020 (CPU C) —Subset of Action Set for Deep Learning 10OCT2020 (CPU C) —Time Series MOTIF Analysis 10OCT2020 (CPU C) —Singular Spectrum Analysis 10OCT2020 (CPU C) —TimeSeries Distance Measures 10OCT2020 (CPU C) —Subspace Tracking 10OCT2020 (CPU C)
原创文章: ”难道是SAS10?云分析服务时代的到来“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/454
《SAS编程演义》推荐语
by sxlion
作者抱着朴素的助人初衷和与大家分享SAS编程经验的愿望,开始了写书历程,并保持着高昂的写作热情直到本书完成。据我所知,准备或部分完成SAS书稿的SASor(SAS爱好者的代称)不少,其中包括像我这样的鸡血分子,但是能够忍受重复编辑文字代码过程数日长时间的枯燥和保持追求更好一点的耐心,坚持到出版那一刻的SASor却屈指可数。纵览全书,作者在分析了市场上已有SAS参考书籍特点的基础上,给了本书一个较好的定位,填补了当前SAS实用编程书籍的较大缺口。本书章节内容丰富、编制合理,各章节富有层次和逻辑感,从各要点的选择与偏重就可见一斑。以绘图章节为例,中文SAS书籍基本上缺失了画图编程内容,即使有也是粗略的介绍,并无实质参考性。本书画图章节首先全面介绍SAS三种绘图功能模块,然后选择功能较强、上手较为容易的ODS(Output Delivery System)图形系统作实例绘图实现方式,运用逐步提问的方式,展示各类系列图形编程示例,举例丰富、又有一定的深度,较为全面的讲解了各种绘图编程方法。内容上安排匠心独具,实用性参考性很强。
显然,任何一本书,都不可能解决学习工作中的方案设计、数据收集、整理、分析及绘图展示等数据方面的所有问题,但是本书所叙内容对于SAS编程要素的解读、数据操作与管理、基于数据的绘图与制表等等均有实用参考功能和启发引导作用。因此,此书可作为不同编程水平层级的SASor案头常备书。
再次为作者的勤奋和诚意点赞!
邵小龙
原创文章: ”《SAS编程演义》推荐语“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/442
by sxlion
SAS绘图即学即用系列连载4.1 –曲线图: 以下代码 可以拷贝到SAS编辑器中,直接使用;稍作更改便可得到自己满意的图形。以下来自一本关于SAS绘图的书稿(未出版草稿),均为本人原创。 完整代码详见SAS资源资讯列表 www.saslist.net
4.1 线图
4.11 曲线图
1 2 3 4 5 6 7 8 9 | FILENAME file "d:\SAS_charts\sample411.png"; goptions reset=all device=png gsfname=file/*设置图片格式和存放点*/ hsize=8cm vsize=6cm ; /* 设置绘图区域大小 */ symbol value=none interpol=j CI=orange width=3; /* 设置线点属性 */ proc gplot data=sashelp.stocks; plot high*date; where stock="IBM" and ('01feb90'd <= date <= '01feb91'd); run; quit; |
4.12 分组曲线图
1 2 3 4 5 6 7 8 9 10 11 | FILENAME file "d:\SAS_charts\sample413.png"; goptions reset=all device=png gsfname=file/*设置图片格式和存放点*/ hsize=8cm vsize=6cm ; /* 设置绘图区域大小 */ symbol1 value=none interpol=join CI=red width=2; symbol2 value=none interpol=join CI=blue width=2; symbol3 value=none interpol=join CI=orange width=2; proc gplot data=sashelp.stocks; plot high*date=stock; where ('01feb90'd < date < '01feb91'd); run; quit; |
4.13 双/多曲线图
1 2 3 4 5 6 7 8 9 10 11 | FILENAME file "d:\SAS_charts\sample414.png"; goptions reset=all device=png gsfname=file/*设置图片格式和存放点*/ hsize=10cm vsize=8cm ; /* 设置绘图区域大小 */ symbol1 value=none interpol=join CI=red L=2 width=1; /*L:设置线型 */ symbol2 value=none interpol=join CI=orange L=1 width=2; symbol3 value=none interpol=join CI=green L=3 width=1; proc gplot data=sashelp.stocks; plot high*date close *date low*date /overlay ; where stock="IBM" and ('01feb90'd < date < '01feb91'd); run; quit; |
4.14 双坐标曲线图
1 2 3 4 5 6 7 8 9 10 11 | FILENAME file "d:\SAS_charts\sample415.png"; goptions reset=all device=png gsfname=file/*设置图片格式和存放点*/ hsize=10cm vsize=8cm ; /* 设置绘图区域大小 */ symbol value=none interpol=j CI=red width=1; /* 设置线属性 */ symbol2 value=none interpol=j CI=black width=1; /* 设置点属性 */ proc gplot data=sashelp.stocks; plot high*date/vzero; plot2 volume*date; where stock="IBM" and ('01feb90'd <= date <= '01feb91'd); run; quit; |
4.15 其他修饰:
参考线、图例、坐标轴、标题、脚注
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | FILENAME file "d:\SAS_charts\sample416.png"; goptions reset=all device=png gsfname=file/*设置图片格式和存放点*/ hsize=12cm vsize=8cm ; /* 设置绘图区域大小 */ symbol1 value=none interpol=join CI=red width=2;/* 设置点属性 */ symbol2 value=none interpol=join CI=orange width=2; symbol3 value=none interpol=join CI=green width=2; axis1 order= ('01jan86'd to '01jan06'd by 1461) LABEL=( "Period") minor=none offset=(0.2 cm); /*调整坐标轴的显示、改变轴标签内容*/ axis2 order= (0 to 250 by 50) LABEL=(angle=90 "") major=none minor=none; /*调整坐标轴的显示、改变轴标签内容和位置*/ legend1 label=none position=(top right inside) mode=share; Title H=0.4cm "Three company's stock from '01JAN86' to '01JAN06' "; Footnote justify=left "Data resource: sashelp.stocks" ; proc gplot data=sashelp.stocks; plot close*date=stock / haxis=axis1 vaxis=axis2 vref=50 to 200 by 50 lvref=1 CVREF=black WVREF=1 legend=legend1 ; run; quit; |
原创文章: ”SAS绘图即学即用系列连载4.1-线图“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/409
翻译 by JosephYX 校对 by sxlion 原文链接
导读:尽管这个话题已经讨论过很多次,但是这个翻译是比较系统的总结了一下两个软件的优缺点,值得一看。PS: 此话题已老,推荐新人看,另见以前一篇SAS评论引发的思考 by sxlion
尽管在工业界还是被 SAS 所统治,但是 R 在学术界却得到广泛的应用,因为其免费、开源的属性使得用户们可以编写和分享他们自己的应用。然而,许多正在获得数据分析相关学位的学生们由于缺乏 SAS 经验的情况而在找工作的路上困难重重,与此同时,他们要面对从学校熟悉的 R向 SAS 转型的痛苦。理想情况是,你需要知道所有可能的编程语言,工作的时候使用与工作情况最匹配的那个,当然这个基本上是痴人说梦。我们的目的就是展示这两种差异巨大的语言各自优点,并且共同发挥他们的优势,我们同时还要指出那些不使用 SAS 好多年的、现在正在使用 R语言的人们的一些误解和偏见,因为他们已经很少关注 SAS 的发展和进步了。
我们选取 SAS 和 R 的原因是因为他们是目前在统计领域中最有统治地位的两个编程语言。 现在我们注意到一个不好的现象,就是在学术界重度使用R的用户认为R在被SAS霸占的工业界有具有相当优势的,然而熟练掌握这两个软件对于想在数据分析领域取得小有成就的年轻人来说很关键。教授误解加上对某个软件的偏好往往对学生有着不利的引导,因此需要在这里指出:教授们,别偷懒了,对某种语言的主观偏好将会影响学生的钱途。
SAS经常有一些更新(有点慢,sxlion注),非SAS程序员由于没有技术跟进往往并不知情。SAS绘图模块就是一个快速发展并成长的例子,然而许多人并不注意到这些升级以至于他们仍然固执的使用 R画图。SAS另一个不广为人知的例子是SAS可以轻松自定义函数,这正是 R 的强项。这个SAS过程步(PROC)有全面的语法检查、翔实的文档和技术支持;然而一个新的使用者很可能不知道这些工具可用,或者根本不知道它们的存在。另外,SAS 还拥有卓越的培训课程,网络及用户组分享资源,不同相关主题的大量书籍。知道并合理的使用这些技术以及工具 有助于减少使用 SAS的畏惧之心。
本文就在我们学院碰到的一些共同误解的地方,在此对比列出两种语言的优缺点。当然还有更多的争论在进行中,但是本文汇中我们将选取最为普遍的来进行讨论。我们希望能够消除误解,并且尽可能地为那些不能及时跟进R或SAS的分析人士提供新的信息。
SAS:
R:
在这个问题上,SAS 和 R 的优缺点是互补的。对于 R,有人认为它的代码是开放的,可以看到 R 是如何工作的,这对于拥有相关背景的人是比较容易理解的。然而对于 SAS,它的过程步是预装的,文件中对不同的语句(Statement)及选项( Option) 存储了大量的数学公式。如果用户真的想看到底层程序,这个也是很容易实现的。对两种语言的使用着者来说,不管是学生还是其它用户,只是运行代码的话对于两种语言是没有什么不同的。你运行SAS,不需要知道它在干什么,类似的是,你运行R时,也不需要知道它在后台调用的函数。你所做的就是按章操作而已。
原创文章: ”SAS与R优缺点讨论:从工业界到学界“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/370
Swati Agarwal,OPTUM,Eden Prairie,MN
空谷幽兰 翻译 sxlion 校对 原文链接
译言:SAS DATA步对于SAS入门学习者来说是个难以理解的东西,因为SAS封装了一些过程,这种封装对于有语言基础的人来说反而是一个障碍。本文非常详细的解释了SAS 数据的编译、执行过程,对于了解SAS的基本运行有很大帮助。不管SAS老鸟,新鸟,相信你都会有收获,因为这篇文章是难得的如此系统 !
摘要
每个SAS数据步(SAS Data step,以后写成简写“DATA步”)在整个SAS程序中编译和执行过程中。大量DATA步的处理过程都是非明示的(即隐藏不可见)。例如,尽管程序中没有使用循环控制语句不包含循环,但DATA步都像一个自封装的小程序以一种非明示的循环形式执行。
这篇文章探讨了一些非明示的DATA处理过程怎么控制你的DATA步实际运行的。
需要提前说明的概念:
你或许在程序中写过大量的DATA步:一些能运行,一些则运行不了。有时候你知道为什么;有时你不知道为什么,甚至你冥思苦想而百思不得其解。如果碰到过这些问题,那么这篇文章很适合你。
Data步设计的非常好,但是有些另类。如果你想写出很漂亮的代码,就很有必要知道DATA步的工作原理。读完这篇文章以后,“哦,哦,… 原来如此!”,一个即使使用SAS多年的老鸟,也会发出这样的感叹。 from http://saslist.net
引言
DATA步是建SAS数据集的主要方法之一。要想成为一个优秀的SAS程序员很有必要理解DATA步的各个环节,主要是因为一些涉及数据处理和创建数据集的任务可能只能通过DATA步才能解决(这些任务不能通过SAS过程步(SAS procedures,以后简写成“SAS过程步”)解决、或者使用SAS过程步太过复杂而难以使用)。
了解DATA步的生命周期非常重要,它分为编译和执行两个阶段。同时学习PDV也非常重要。PDV贯穿SAS的编译和执行两个阶段,而且能决定了信息在DATA步中的存储及变化。
编译阶段包括:
执行阶段包括:
PDV贯穿编译和执行阶段:
原创文章: ”SAS DATA步之全解密“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/356
近期SAS公司研发总经理刘政先生在2013年6月14日中美创新系列活动之2013大数据创新峰会所做的演讲,主题为:“大数据之核心技术” 内容精彩、图片惊艳,全文pdf见文后链接。
原创文章: ”大数据之核心技术 by SAS刘政“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/313
导读:本文节选自SAS中国公司总经理刘政先生于2012年底受邀到全国各大高校所做的学术报告ppt,这部分介绍SAS公司历史及科技发展史,对SAS公司感兴趣的同学可以看看。
原创文章: ”SAS公司发展史 by 刘政“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/309
SAS公司历史全知道一
by sxlion
2011年美国最大的计算机专业杂志PCMAG杂志列出了科技界领袖的专属富豪榜中,SAS公司联合创始人兼CEO James Goodnight(硬翻译成“晚安”) 以69亿美元位居富豪榜第八。 如果不是因为使用SAS软件的原因,我相信大多数人不知道Goodnight这个人,他绝对够低调。另外,他也是美国北卡罗来纳州首富。
在上个世纪,SPSS,BMDP和SAS被称为国际三大统计软件,后来BMDP被 SPSS收购,SPSS今年又被IBM收购。SPSS收了BMDP以后就晾一边,晾没了,如今连域名bmdp.com处于待售状态。SPSS前老板老聂Norman Nie把SPSS卖给IBM后,自己捣腾个做R商业版本的公司Revolution R,看来老聂把BMDP和SPSS整垮了,还不甘心。不过看不出Revolution有什么前途,如今只剩下晚安老头孤独求败了。 from: http://saslist.net
图1. Goodnight和他收藏的岩石、矿石、化石和陨石
原创文章: ”SAS公司历史全知道一“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/299
原创文章: ”SAS资讯 from 新浪微博 – 2012-10-03“,转载请注明: 转自SAS资源资讯列表
本文链接地址: http://saslist.net/archives/290